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Abstract

This paper presents a solution to the initialization problem for a system of linear

fractional-order differential equations. The scalar problem is considered first, and solutions are

obtained both generally and for a specific initialization. Next the vector fractional order
differential equation is considered. In this case, the solution is obtained in the form of matrix F-

functions. Some control implications of the vector case are discussed. The suggested method of

problem solution is shown via an example.

Introduction

Fractional order systems, or systems containing fractional derivatives and integrals, have

been studied by many in the engineering area (Heaviside, 1922; Bush, 1929; Goldman, 1949;
Holbrook, 1966; Starkey, 1954; Carslaw and Jeager, 1948; Scott, 1955; and Mikusinski, 1959).

Additionally, very readable discussions, devoted specifically to the subject, are presented by
Oldham and Spanier (1974) and Miller and Ross (1993). It should be noted that there are a

growing number of physical systems whose behavior can be compactly described using fractional

system theory. Of specific interest to electrical engineers are long electrical lines (Heaviside,
1922), electrochemical processes (Ichise, Nagayanagi, and Kojima, 1971; Sun, Onaral, and Tsao,

1984), dielectric polarization (Sun, Abdelwahab, and Onaral, 1984), colored noise (Mandeibrot,
1967), viscoelastic materials (Bagley and Calico, 1991; Koeller, 1984; Koeller, 1986; Skaar,

Michel, and Miller, 1988), and chaos (Hartley, Lorenzo, and Qammar, 1995).

With the growing number of applications, it is important at this time to establish a clear

system theory for these fractional order systems, so that they may be accessible to the general
engineering community. This topic is addressed in the present paper with regard to the

initialization of vector systems, while the generalized impulse response was discussed in (Hartley
and Lorenzo, 1998b). The first section presents the scalar fractional order differential equation,

where both initial condition and forced responses are obtained. Next the vector fractional-order

differential equation is considered. A simple example demonstrating the use of the vector system
theory is given. The paper concludes with a discussion of some system theoretic implications of
the vector realization.
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The Scalar Initialization Problem

The general linear scalar constant-coefficient

O< q < 1, is given as

fractional differential equation, for

, d, q x(t) = Ax(t) + Bu(t), (1)

where it is assumed that the system is quiescent at time a, that is x(t)=O for all t < a. The left

side of Equation (1) should be interpreted to be the q-th derivative of x(t), starting at time

a and continuing until time t, namely

,,d," x(t) =- _]"

Now, the initialization problem (Lorenzo and Hartley, 1998), starts at some time c, with

a < c < t. Choosing c = 0, for ease of using Laplace transforms, Equation (1) can also be
written as

od# x(t) + ,,dol x(t) = Ax(t) + Bu(t). (2)

where the fractional derivative has been broken into positive and negative time parts,
respectively. It is important to point out that the fractional derivative is generally not a local

operator, as is the integer derivative, but is an operator with a long, but fading, memory.

The second term on the left of Equation (2) represents this initialization response due to

the behavior of the system before t = 0. It should be noticed that the past history of the

particular variable that is fractionally differentiated must be known for as long as the system has
been operated to obtain the correct initialization response. This equation can also be written, for
t > (c = 0), as

D, _ x(t) - od, _ x(t) + Ilt(q,x,a,O,t ) = Ax(t) + Bu(t) (3)

where, for terminal charging,

_u(q,x,a,O.t) -.d,'_ x(t) = _- F(l:q)_ (t-'r)' J
(4)

This is known as the initialization function. Note that only "terminal charging" is considered in
this paper (Lorenzo and Hartley, 1998).

This initialization problem is now solved using Laplace transforms. Equation (3) can be
Laplace transformed as

s q X(s) + Ilt(q,x,a,O,s) = AX(s) + BU(s). (5)
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It shouldthenbe recognizedfrom Equation(4) thattheLaplacetransformof the initialization
functionis

RearrangingEquation(5)gives

(6)

B 1
X (s) - U (s) _(q, x, a,0, s) , (7)

s q - A s q - A

which can be inverse transformed, using the Laplace transform identities of Hartley and Lorenzo
(1998b), to give

I

x(t)= _Fq[A,r]Bu(t-r)d'c
0

- } Fq[A,'c]llt(q,x,a,O,t- r)dr.
0

(8)

Here the F-function is the impulse response of the fundamental linear fractional differential

equation, as discussed in (Hartley and Lorenzo, 1998b). It is defined as

A ';t "';
F;[A't]- tq-' .=o F(nq+q)

(9)

Clearly, the first term in Equation (8) represents any forced response due to u(t), and the second

term represents the initialization response of the system due to the past history of x(t).

Traditionally, for the integer order system (q=l) this initialization term becomes

Ilt(l,x,a,O,s)equal to a constant. Alternatively, for fractional order systems, this term is time

varying into the future; that is, the past history of x(t) has the appearance of a time dependent

forcing term into the infinite future.

To give some additional insight into the problem, a specific function is chosen for

x(t), a < t < O. Choosing the history as x(t)=k, a constant, for - oo < t < 0, (with a = -oo ),

then the initialization function of Equation (6) becomes

1 dr
d F(1_(q,x,-oo,O,s) = L }im dt q)

(10)

Performing the integration on the right side of this equation gives

IlJ(q,x,-_,O,s) = L }im dt q) (l-q) ._=,, J
(11)
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Insertingthelimitsof integrationgives

d F(1-= L )im a-;

Performing the required differentiation gives

Ilt(q,x,-oo,O,s) = L{,lim

((t_a)'-u t'-q )]}q)_, -(1----_ (l-q) "

( 1 l)}F(ILq) (t-a) q t'_ •

(12)

(13)

Invoking the limiting process forces the first of the two time functions to zero.

remaining term becomes

-L{ k 1_(q,x,--_,O,s) = F(l--q) t q (14)

Evaluating the Laplace transform yields the result (for q < 1 )

llt( q, x,-,,_,O, s) = - ks q-l (15)

Inserting this back into Equation (7) gives the Laplace transform of the total response of the

system, again for the history x(t) = k, t < O,

Then the

B ks q
X(s) - U(s) + (16)l \

s _ -A sis" -AI
\

This equation can now be inverse Laplace transformed using the transform pairs of Hartley and
Lorenzo (1998b). The total response using this specific initialization is then

!

0

(17)

Here it should be recognized that the first term is the convolution of the input u(t) with the

system impulse response, that is, the F-function. The second term is the initialization function

and, for this particular past history, is the Mittag-Leffler E-function (Hartley and Lorenzo,
1998b).

The Vector Initialization Problem

A useful representation for systems of fractional order differential equations is the vector

space of fractional dynamic variables. It should be noted that the number of fractional dynamic
variables in a particular representation is somewhat arbitrary, as various sub-multiple basis values

can usually be chosen for q. Once this is done, the vector representation can be written as
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,.D[ t x(t) = Ax(t) + Bu_(t) , x(t) given for a < t < c,

or _(q, x, a, c, t) given for t > c (18)

y(t) = Cx(t) + Du(t) (19)

where x(t), y(t), _u(t), and Ilt(q,x,a,O,t ) can generally be considered to be vectors of the

appropriate dimension, and the starting time, c, will usually be chosen as zero. Note that

,,D{tx(t)- ,dffx(t)+qt(q,x,a,O,t) where the I#-function was defined in Equation (4).

Equation (18) can be rewritten as a vector generalization of Equation (3) as

od7 x(t) + _(q,x,a,O,t) = Ax(t) + Bu(t) , (20)

where it is now understood that the initialization function is the vector of initialization functions,

Illt(q, xf,a,O,t) ]

ilt( q,x, a,O,t )=lllt( q'x2:'a'O't ) I

Lo/(q,x,, ,a,0,t)J

(21)

In what follows, this will, without loss of generality, be written as

_-gtl (t) 1

v/(q,x,a,O,t)= _(t) = / I//2 (t) / . (22)

It should be noted that Bagley and Calico (1991) and Padovan and Sawicki (1997) both present a

fractional state space representation, but do not include the general historic effects of the

initialization function which are presented here. It should also be noticed that if the original
differential equations have non-rationally related derivatives, such as

od,I/'/5-x(t) + od]/_x(t) + x(t) = u(t), then ibis approach will require an approximation of the

value of q, as integer sub-multiples of the orders are not obtainable.

At this point, it is important to notice that the fractional dynamic variables in the system
of Equations (18) and (19) are not states in the true sense of the name "state" space. In the usual
integer order system theory, the set of states of the system, known at any given point in time,

along with the system equations, are sufficient to predict the response of the system both forward

or backward in time. Otherwise stated, the collection of numbers x(t), at any time t, specify the

complete "state" of the system at that time. Mathematically stated, the system will have a unique
time response given its initial state. It should be clear, however, that the fractional dynamic

variables do not represent the "state" of a system at any given time due to the presence of the
initialization function vector, which carries information about the history of the elements of the
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system. Consequently,as the initialization function vector is generally present, the set of

elements of the vector x(t), evaluated at any point in time, does not specify the entire "state" of

the system. Thus in a fractional system setting, the ability to predict the future response of a
system requires the set of fractional differential equations along with their initialization functions,

that is, Equation (18). A further implication, mentioned below, is that the impulse response of the
vector system does not possess the semi-group property.

The initialization problem can be solved for x(t) as in the scalar case by using Laplace

transforms, and generalizing Equation (5) for the vector initialization function,

s q X(s) + Ill(s ) = AX(s) + BU(s) (23)

Y(s) = CX(s) + DU(s). (24)

Rearranging Equation (23) gives

(Is q -A)X(s) = BU(s) - Ill(s ) . (25)

or equivalently

X(s) = (IsU-A) -' BU(s) - (Isq-A)-lllt(s). (26)

Inserting Equation (26) into Equation (24) gives the Laplace transform of the total system output
response

Y_(s) = _7(Is u -A)-' B + D}U(s)- C(Is q -A)-'llt(s ) . (27)

This can now be inverse Laplace transformed to give the time response

t !

y(') = C _ Fq[A,'f]Bu(t-I:)d'c + Ou(,) - C _ Fq[A,t]qz(t- _)d'¢.
0 0

(28)

This can also be represented as

t

Y(t) = C _Fq[A,z]{Bu_(t-z) -Ilt(t-_)}dr + Du(t).
0

(29a)

or equivalently (using the convolution property) as

!

Y(t) = C _Fq[A,t-r]{Bu_(r) - Ilt(r)}dr + Du(t).
0

(29b)

Clearly this requires the use of the matrix F -function which can be obtained by the use of its
series expansion. For example, the matrix F -function is defined as
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_=o A _t "uF"[A't]= tq-I = F(nq+n) ' q >O' (30)

where A is now generally the square nxn system matrix. As for integer order systems, other

approaches can probably be found for evaluating the matrix F- function (Moler & Van Loan,
1978), but only the Laplace transform approach will be considered further as it is easily applied

(see Example below).

Example

This section presents an example to demonstrate the application of vector fractional order

differential equations. The system considered is the inductor terminated Iossy line studied by

Heaviside (1922) and Bush (1929), and is shown in Figure 1. This system was studied in Hartley
and Lorenzo (1998b), using an input-output approach. Here a vector fractional dynamic variable

approach, which includes initialization effects, is presented. The vector fractional dynamic

variable equations for this system are now derived.

sL

(
+

T T T :..-:.
I

Figure 1. Inductor terminated semi-infinite iossy line example.

The dynamic relationship between current and voltage for the inductor is

vL(t) = L O I i(t),

where L is the inductance of the coil. Likewise for the lossy line

v,(t) =0_ D,J/2i(t),

where a is a line constant. In differential form, with c = 0, these equations can be written as

1
od_ i(t) + Ilt(1,i(t),a,O,t) = --v (t)

L L

,11/2o_, v,(t) + Ig(1/2,v (t),a,O,t) = a i(t). (31)
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However,fromKirchhoff'svoltagelaw, v c (t) = v_(t) - v, (t). Replacing this in the inductor

equation gives its dynamic equations as

0d] i(t)= - lv,(t) + LV_(t) - _(1,i(t),a,O,t ). (32)

To have a vector space of fractional dynamic variables, it is necessary to reduce all of the
differential relationships to differentials based on the largest common differential fraction. In this

case that would be q=l/2. Thus we will define the following system fractional dynamic

variable vector,

x,(t)]

x(,) =/x2(t)/--
Lx3(t)J

v (t) ]
i(t) .

,t 112i(t)
O_t

(33)

The system input is defined as u(t) = v_(t), and the system output is chosen as y(t) = v(t).

With these definitions, Equations (31 ) and (32) can be written in vector representation

,,d]/2 x_(t)= 0 x(t) +

- 0

u(t) + --Ilt(l / 2, v_ (t),a,O,t)]

-_(l,i(t),a,O,t) j

(34)

y(t) = [1 o + [o].(t) (35)

which are the specific forms of Equations (18) and (19) for this problem.

Performing the required manipulations for this problem, Equation (26) becomes

X(s) -

s

1 1

s 3/2 + o_/L L
_ S 112

L

aS j/2 O_

S S I/2

OE
s

L

o v s)-lU,+ s>lp,
7j

(36)

where, from Eqn. (34), I/tj (s) =l/t0 / 2, % (t), a,0, s), I//2 (s) =0, and I/t3(s) =l/t 0, i(t), a,O, s)

which is a constant for an inductor. The Laplace transform of the forced response, X F (s), is

then the first term of Equation (36)

NASA/TP--1999-208919 8



X (s) -
1/L

s 3_2 + ot/L

1/2
S

S

U(s), (37)

and the Laplace transform of the initialization response, X / (s), is the second term of Equation

(36)

X,(s) -
-1

s 3/2 + a/L

SI//I (S) -t- _S '1/2 IDr2 (S) -'1- 0_1/1"3 (S)

- T + sq/2(s) + s ''2

[{,,2,
(38)

These expressions can now be evaluated for any specific inputs and initialization functions.

It should be noted that the availability of fractional dynamic variables now allows many

choices for the basis q, and thus the total number of fractional dynamic variables can increase if

the basis q is chosen to be smaller. In the example of this section, choosing q = 1/4, rather

than I/2, would yield six fractional dynamic variables rather than three. It is also important to
remember that the least number of fractional dynamic variables is obtained by choosing the basis

q as the largest common fraction of the differential orders. For example, given

ql =1/2, q2 =1/3, would require a basis q of at most q = 1/6.

Discussion

Some important observations concerning the vector space of fractional dynamic variables
should be made at this point. First of all, as discussed above, it is necessary to compute matrix

F-functions. The use of the infinite series is sufficient for many problems, but there are

probably many other ways to perform this type of computation (Moler & Van Loan, 1978).

Questions of controllability, observability, and minimality also arise when the system is

expressed in a vector fractional dynamic variable form. There are two directions to go in this

regard. One is to completely rederive all of the related vector system properties. This is not done
at this time. It is important to note, that the fractional dynamic variable vector alone does not
contain all the information about the state of the system, but requires the addition of the I/t-

vector. That is, the F -functions do not have the semi-group property (Curtain and Zwart, 1991).

The implications of this are not totally clear at present; however, one important consideration in

observability and controllability issues is the inclusion of the time dependent initialization
function. Conversely, rather than rederiving all of the system theory results on controllability

and observability, useful results can still be obtained by simply using the controllability,

observability, and Hankel matrices directly for the particular given fractional vector system, while

neglecting the I/t-vector. This can be done as usual, given the system (A, B, C, D) matrices,
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completelywithoutregardto their deepersystemtheoreticimplications. In doingso, these
matriceslosingrankwouldthennotnecessarilyimplylossof controllabilityorobservability,but
it wouldimplythatthereis a w-plane pole-zero cancellation (Hartley and Lorenzo, 1998b), as

these algebraic properties of the vector space system are preserved. This is a very useful result!

The minimality of a given system with respect to the number of basis w -plane operators can then
be determined by direct consideration of the singular values of the Hankel matrix (which are

probably not the same as Hankel singular values in the usual integer order system sense). It

would then appear that many of the usual model reduction techniques still apply with respect to

the basis w-plane operator. However, little can be said about minimality with respect to the
usual integer order operators.

Finally, it should be noted that the vector space of fractional dynamic variables allows

direct use of all the standard state feedback and observer theory, with the understanding that
closed-loop poles are being placed in the w-plane. It is not clear at this point, however, how to

interpret any of optimal control theory. Although we could use Lyapunov and Riccati equations

for design, their interpretation is not at all clear with regard to optimality. One would expect that
the resulting controllers, which are always guaranteed to have closed-loop poles in the left half

s-plane, would now place all of the closed-loop poles in the left half of the w-plane, which

would then guarantee some form of hyperdamped response. Clearly, the optimal control issue
requires much further study.
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